Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 399
Filtrar
1.
Am J Physiol Renal Physiol ; 321(6): F689-F704, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34693742

RESUMO

Macula densa (MD) cells, a chief sensory cell type in the nephron, are endowed with unique microanatomic features including a high density of protein synthetic organelles and secretory vesicles in basal cell processes ("maculapodia") that suggest a so far unknown high rate of MD protein synthesis. This study aimed to explore the rate and regulation of MD protein synthesis and their effects on glomerular function using novel transgenic mouse models, newly established fluorescence cell biology techniques, and intravital microscopy. Sox2-tdTomato kidney tissue sections and an O-propargyl puromycin incorporation-based fluorescence imaging assay showed that MD cells have the highest level of protein synthesis within the kidney cortex followed by intercalated cells and podocytes. Genetic gain of function of mammalian target of rapamycin (mTOR) signaling specifically in MD cells (in MD-mTORgof mice) or their physiological activation by low-salt diet resulted in further significant increases in the synthesis of MD proteins. Specifically, these included both classic and recently identified MD-specific proteins such as cyclooxygenase 2, microsomal prostaglandin E2 synthase 1, and pappalysin 2. Intravital imaging of the kidney using multiphoton microscopy showed significant increases in afferent and efferent arteriole and glomerular capillary diameters and blood flow in MD-mTORgof mice coupled with an elevated glomerular filtration rate. The presently identified high rate of MD protein synthesis that is regulated by mTOR signaling is a novel component of the physiological activation and glomerular hemodynamic regulatory functions of MD cells that remains to be fully characterized.NEW & NOTEWORTHY This study discovered the high rate of protein synthesis in macula densa (MD) cells by applying direct imaging techniques with single cell resolution. Physiological activation and mammalian target of rapamycin signaling played important regulatory roles in this process. This new feature is a novel component of the tubuloglomerular cross talk and glomerular hemodynamic regulatory functions of MD cells. Future work is needed to elucidate the nature and (patho)physiological role of the specific proteins synthesized by MD cells.


Assuntos
Sistema Justaglomerular/metabolismo , Biossíntese de Proteínas , Animais , Comunicação Autócrina , Dieta Hipossódica , Taxa de Filtração Glomerular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Intravital , Sistema Justaglomerular/citologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Comunicação Parácrina , Renina/metabolismo , Transdução de Sinais , Sódio na Dieta/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
2.
Circ Res ; 128(7): 887-907, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793334

RESUMO

Renin cells are essential for survival perfected throughout evolution to ensure normal development and defend the organism against a variety of homeostatic threats. During embryonic and early postnatal life, they are progenitors that participate in the morphogenesis of the renal arterial tree. In adult life, they are capable of regenerating injured glomeruli, control blood pressure, fluid-electrolyte balance, tissue perfusion, and in turn, the delivery of oxygen and nutrients to cells. Throughout life, renin cell descendants retain the plasticity or memory to regain the renin phenotype when homeostasis is threatened. To perform all of these functions and maintain well-being, renin cells must regulate their identity and fate. Here, we review the major mechanisms that control the differentiation and fate of renin cells, the chromatin events that control the memory of the renin phenotype, and the major pathways that determine their plasticity. We also examine how chronic stimulation of renin cells alters their fate leading to the development of a severe and concentric hypertrophy of the intrarenal arteries and arterioles. Lastly, we provide examples of additional changes in renin cell fate that contribute to equally severe kidney disorders.


Assuntos
Hipertensão/etiologia , Rim/citologia , Renina/fisiologia , Animais , Arteríolas/embriologia , Pressão Sanguínea/fisiologia , Comunicação Celular , Diferenciação Celular , Plasticidade Celular , Cromatina/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , Conexinas/fisiologia , Homeostase , Humanos , Integrinas/fisiologia , Sistema Justaglomerular/citologia , Rim/irrigação sanguínea , Rim/embriologia , Glomérulos Renais/fisiologia , Camundongos , MicroRNAs/fisiologia , Fenótipo , Regeneração/fisiologia , Artéria Renal , Renina/metabolismo , Sistema Renina-Angiotensina/fisiologia , Células-Tronco/fisiologia , Equilíbrio Hidroeletrolítico
3.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585970

RESUMO

Connexin hemichannels play an important role in the control of cellular signaling and behaviors. Given that lowering extracellular Ca2+, a condition that activates hemichannels, is a well-characterized stimulator of renin in juxtaglomerular cells, we, therefore, tested a potential implication of hemichannels in the regulation of renin in As4.1 renin-secreting cells. Lowering extracellular Ca2+ induced hemichannel opening, which was associated with cAMP signaling pathway activation and increased renin production. Blockade of hemichannels with inhibitors or downregulation of Cxs with siRNAs abrogated the activation of cAMP pathway and the elevation of renin. Further analysis revealed that cAMP pathway activation was blocked by adenylyl cyclase inhibitor SQ 22536, suggesting an implication of adenyl cyclase. Furthermore, the participation of hemichannels in the activation of the cAMP signaling pathway was also observed in a renal tubular epithelial cell line NRK. Collectively, our results characterized the hemichannel opening as a presently unrecognized molecular event involved in low Ca2+-elicited activation of cAMP pathway and renin production. Our findings thus provide novel mechanistic insights into the low Ca2+-initiated cell responses. Given the importance of cAMP signaling pathway in the control of multiple cellular functions, our findings also highlight the importance of Cx-forming channels in various pathophysiological situations.


Assuntos
Cálcio/metabolismo , Conexinas/metabolismo , AMP Cíclico/metabolismo , Junções Comunicantes/fisiologia , Sistema Justaglomerular/metabolismo , Renina/metabolismo , Trifosfato de Adenosina , Animais , Células Cultivadas , Sistema Justaglomerular/citologia , Camundongos , Transdução de Sinais
4.
Hypertension ; 76(2): 458-467, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32594804

RESUMO

Juxtaglomerular cells are crucial for blood pressure and fluid-electrolyte homeostasis. The factors that maintain the life of renin cells are unknown. In vivo, renin cells receive constant cell-to-cell, mechanical, and neurohumoral stimulation that maintain their identity and function. Whether the presence of this niche is crucial for the vitality of the juxtaglomerular cells is unknown. Integrins are the largest family of cell adhesion molecules that mediate cell-to-cell and cell-to-matrix interactions. Of those, ß1-integrin is the most abundant in juxtaglomerular cells. However, its role in renin cell identity and function has not been ascertained. To test the hypothesis that cell-matrix interactions are fundamental not only to maintain the identity and function of juxtaglomerular cells but also to keep them alive, we deleted ß1-integrin in vivo in cells of the renin lineage. In mutant mice, renin cells died by apoptosis, resulting in decreased circulating renin, hypotension, severe renal-vascular abnormalities, and renal failure. Results indicate that cell-to-cell and cell-to-matrix interactions via ß1-integrin is essential for juxtaglomerular cells survival, suggesting that the juxtaglomerular niche is crucial not only for the tight regulation of renin release but also for juxtaglomerular cell survival-a sine qua non condition to maintain homeostasis.


Assuntos
Integrina beta1/metabolismo , Sistema Justaglomerular/metabolismo , Nefropatias/metabolismo , Artéria Renal/metabolismo , Renina/metabolismo , Animais , Apoptose/fisiologia , Sobrevivência Celular/fisiologia , Homeostase/fisiologia , Integrina beta1/genética , Sistema Justaglomerular/citologia , Nefropatias/genética , Camundongos , Camundongos Knockout
5.
Gen Comp Endocrinol ; 296: 113533, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32561435

RESUMO

Renin or a renin-like enzyme evolved in ancestral vertebrates and is conserved along the vertebrate phylogeny. The ontogenic development of renin, however, is not well understood in nonmammalian vertebrates. We aimed to determine the expression patterns and relative abundance of renin mRNA in pre- and postnatal chickens (Gallus gallus, White Leghorn breed). Embryonic day 13 (E13) embryos show renal tubules, undifferentiated mesenchymal structures, and a small number of developing glomeruli. Maturing glomeruli are seen in post-hatch day 4 (D4) and day 30 (D30) kidneys, indicating that nephrogenic activity still exists in kidneys of 4-week-old chickens. In E13 embryos, renin mRNA measured by quantitative polymerase chain reaction in the adrenal glands is equivalent to the expression in the kidneys, whereas in post-hatch D4 and D30 maturing chicks, renal renin expressions increased 2-fold and 11-fold, respectively. In contrast, relative renin expression in the adrenals became lower than in the kidneys. Furthermore, renin expression is clearly visible by in situ hybridization in the juxtaglomerular (JG) area in D4 and D30 chicks, but not in E13 embryos. The results suggest that in chickens, renin evolved in both renal and extrarenal organs at an early stage of ontogeny and, with maturation, became localized to the JG area. Clear JG structures are not morphologically detectable in E13 embryos, but are visible in 30-day-old chicks, supporting this concept.


Assuntos
Galinhas/genética , Regulação da Expressão Gênica , Renina/genética , Animais , Embrião de Galinha , Sistema Justaglomerular/citologia , Sistema Justaglomerular/metabolismo , Organogênese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Renina/metabolismo , Sistema Renina-Angiotensina
6.
In Vitro Cell Dev Biol Anim ; 55(2): 138-147, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30645697

RESUMO

The aim of the present study was to investigate the renogenic characteristics of amniotic fluid stem cells (AFSCs) and to evaluate their in vitro differentiation potential into renal proximal tubular-like cells and juxtaglomerular-like cells. We culture expanded AFSCs derived from rat amniotic fluid. The AFSCs grew as adherent spindle-shaped cells and expressed mesenchymal markers CD73, CD90, and CD105 as well as renal progenitor markers WT1, PAX2, SIX2, SALL1, and CITED1. AFSCs exhibited an in vitro differentiation potential into renal proximal tubular epithelial-like cells, as shown by the upregulation of expression of proximal tubular cell-specific genes like AQP1, CD13, PEPT1, GLUT5, OAT1, and OCT1. AFSCs could also be differentiated into juxtaglomerular-like cells as demonstrated by the expression of renin and α-SMA. The AFSCs also expressed pluripotency markers OCT4, NANOG, and SOX2 and could be induced into embryoid bodies with differentiation into all the three germ layers, highlighting the pluripotent nature of these cells. Our results show that amniotic fluid contains a population of primitive stem cells that express renal-progenitor markers and also possess the propensity to differentiate into two renal lineage cell types and, thus, may have a therapeutic potential in renal regenerative medicine.


Assuntos
Líquido Amniótico/citologia , Diferenciação Celular , Sistema Justaglomerular/citologia , Túbulos Renais Proximais/citologia , Células-Tronco/citologia , Animais , Proliferação de Células , Forma Celular , Corpos Embrioides/citologia , Imunofenotipagem , Cinética , Ratos Wistar , Células-Tronco/metabolismo
7.
Pflugers Arch ; 470(6): 969-978, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29427253

RESUMO

The so-called calcium paradoxon of renin describes the phenomenon that exocytosis of renin from juxtaglomerular cells of the kidney is stimulated by lowering of the extracellular calcium concentration. The yet poorly understood effect of extracellular calcium on renin secretion appears to depend on the function of the gap junction protein connexin 40 (Cx40) in renin-producing cells. This study aimed to elucidate the role of Cx40 for the calcium dependency of renin secretion in more detail by investigating if Cx40 function is really essential for the influence of extracellular calcium on renin secretion, if and how Cx40 affects intracellular calcium dynamics in renin-secreting cells and if Cx40-mediated gap junctional coupling of renin-secreting cells with the mesangial cell area is relevant for the influence of extracellular calcium on renin secretion. Renin secretion was studied in isolated perfused mouse kidneys. Calcium measurements were performed in renin-producing cells of microdissected glomeruli. The ultrastructure of renin-secreting cells was examined by electron microscopy. We found that Cx40 was not essential for stimulation of renin secretion by lowering of the extracellular calcium concentration. Instead, Cx40 increased the sensitivity of renin secretion response towards lowering of the extracellular calcium concentration. In line, the sensitivity and dynamics of intracellular calcium in response to lowering of extracellular calcium were dampened when renin-secreting cells lacked Cx40. Disruption of gap junctional coupling of renin-secreting cells by selective deletion of Cx40 from mesangial cells, however, did not change the stimulation of renin secretion by lowering of the extracellular calcium concentration. Deletion of Cx40 from renin cells but not from mesangial cells was associated with a shift of renin expression from perivascular cells of afferent arterioles to extraglomerular mesangial cells. Our findings suggest that Cx40 is not directly involved in the regulation of renin secretion by extracellular calcium. Instead, it appears that in renin-secreting cells of the kidney lacking Cx40, intracellular calcium dynamics and therefore also renin secretion are desensitized towards changes of extracellular calcium. Whether the dampened calcium response of renin-secreting cells lacking Cx40 function results from a direct involvement of Cx40 in intracellular calcium regulation or from the cell type shift of renin expression from perivascular to mesangial cells remains to be clarified. In any case, Cx40-mediated gap junctional coupling between renin and mesangial cells is not relevant for the calcium paradoxon of renin secretion.


Assuntos
Cálcio/metabolismo , Conexinas/metabolismo , Sistema Justaglomerular/metabolismo , Renina/metabolismo , Animais , Conexinas/genética , Feminino , Sistema Justaglomerular/citologia , Masculino , Camundongos
8.
Hypertension ; 69(6): 1145-1155, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28396539

RESUMO

Renin, a key component in the regulation of blood pressure in mammals, is produced by the rare and highly specialized juxtaglomerular cells of the kidney. Chronic stimulation of renin release results in a recruitment of new juxtaglomerular cells by the apparent conversion of adjacent smooth muscle cells along the afferent arterioles. Because juxtaglomerular cells rapidly dedifferentiate when removed from the kidney, their developmental origin and the mechanism that explains their phenotypic plasticity remain unclear. To overcome this limitation, we have performed RNA expression analysis on 4 human renin-producing tumors. The most highly expressed genes that were common between the reninomas were subsequently used for in situ hybridization in kidneys of 5-day-old mice, adult mice, and adult mice treated with captopril. From the top 100 genes, 10 encoding for ligands were selected for further analysis. Medium of human embryonic kidney 293 cells transfected with the mouse cDNA encoding these ligands was applied to (pro)renin-synthesizing As4.1 cells. Among the ligands, only platelet-derived growth factor B reduced the medium and cellular (pro)renin levels, as well as As4.1 renin gene expression. In addition, platelet-derived growth factor B-exposed As4.1 cells displayed a more elongated and aligned shape with no alteration in viability. This was accompanied by a downregulated expression of α-smooth muscle actin and an upregulated expression of interleukin-6, suggesting a phenotypic shift from myoendocrine to inflammatory. Our results add 36 new genes to the list that characterize renin-producing cells and reveal a novel role for platelet-derived growth factor B as a regulator of renin-synthesizing cells.


Assuntos
Perfilação da Expressão Gênica , Sistema Justaglomerular/citologia , Nefropatias/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Renina/biossíntese , Análise de Variância , Animais , Células Cultivadas , Modelos Animais de Doenças , Expressão Gênica , Humanos , Hibridização In Situ , Sistema Justaglomerular/metabolismo , Nefropatias/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Renina/genética , Transdução de Sinais
10.
Curr Hypertens Rep ; 19(2): 14, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28233238

RESUMO

During development, renin cells are precursors for arteriolar smooth muscle, mesangial cells, and interstitial pericytes. Those seemingly differentiated descendants retain the memory to re-express renin when there is a threat to homeostasis. Understanding how such molecular memory is constructed and regulated would be crucial to comprehend cell identity which is, in turn, intimately linked to homeostasis.


Assuntos
Plasticidade Celular , Homeostase/fisiologia , Sistema Justaglomerular/citologia , Rim/irrigação sanguínea , Renina/fisiologia , Animais , Humanos , Sistema Justaglomerular/fisiologia
11.
BMC Med Genet ; 17: 21, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26969407

RESUMO

BACKGROUND: Plasma coagulation Factor XIIa (Hageman factor; encoded by F12) and kallikrein (KAL or Fletcher factor; encoded by KLKB1) are proteases of the kallikerin-kinin system involved in converting the inactive circulating prorenin to renin. Renin is a key enzyme in the formation of angiotensin II, which regulates blood pressure, fluid and electrolyte balance and is a biomarker for cardiovascular, metabolic and renal function. The renin-angiotensin system is implicated in extinction learning in posttraumatic stress disorder. METHODS & RESULTS: Active plasma renin was measured from two independent cohorts- civilian twins and siblings, as well as U.S. Marines, for a total of 1,180 subjects. Genotyping these subjects revealed that the carriers of the minor alleles at the two loci- F12 and KLKB1 had a significant association with reduced levels of active plasma renin. Meta-analyses confirmed the association across cohorts. In vitro studies verified digestion of human recombinant pro-renin by kallikrein (KAL) to generate active renin. Subsequently, the active renin was able to digest the synthetic substrate angiotensinogen to angiotensin-I. Examination of mouse juxtaglomerular cell line and mouse kidney sections showed co-localization of KAL with renin. Expression of either REN or KLKB1 was regulated in cell line and rodent models of hypertension in response to oxidative stress, interleukin or arterial blood pressure changes. CONCLUSIONS: The functional variants of KLKB1 (rs3733402) and F12 (rs1801020) disrupted the cascade of enzymatic events, resulting in diminished formation of active renin. Using genetic, cellular and molecular approaches we found that conversion of zymogen prorenin to renin was influenced by these polymorphisms. The study suggests that the variant version of protease factor XIIa due to the amino acid substitution had reduced ability to activate prekallikrein to KAL. As a result KAL has reduced efficacy in converting prorenin to renin and this step of the pathway leading to activation of renin affords a potential therapeutic target.


Assuntos
Fator XIIa/genética , Calicreínas/genética , Polimorfismo de Nucleotídeo Único , Sistema Renina-Angiotensina/genética , Renina/sangue , Adolescente , Adulto , Idoso , Alelos , Angiotensina I/sangue , Angiotensinogênio/sangue , Animais , Pressão Sanguínea , Proteínas de Ciclo Celular , Linhagem Celular , Regulação da Expressão Gênica , Loci Gênicos , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Hipertensão/genética , Sistema Justaglomerular/citologia , Calicreínas/sangue , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Pré-Calicreína/metabolismo , Renina/genética , Serina Endopeptidases/metabolismo , Transferases , Adulto Jovem
12.
Iran J Kidney Dis ; 9(6): 440-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26552350

RESUMO

INTRODUCTION: Renin synthesis and release is the rate-limiting step in the renin-angiotensin system, because cyclic adenosine monophosphate (cAMP) has been identified as dominant pathway for renin gene expression, and cAMP response element-binding protein (CREB) is found in the human and mouse renin promoter. This study aimed to evaluate the role of CREB in expression of the renin gene. MATERIALS AND METHODS: We created conditional deletion of CREB in mice with low-sodium diet, specifically in renin cells of the kidney. To assess the effect of CREB on renin expression, immunostaining of renin was used in samples from wild-type mice and mice with gene knock-down of CREB. Cyclic AMP response element-binding-protein-binding protein (CBP) and p300 were measured in cultured renin cells of the mice, and RNA detection was done with real-time polymerase chain reaction. RESULTS: With low-sodium diet, renin was expressed along the whole wall of the afferent glomerular arterioles in wild-type mice, while there was no increase or even decrease in renin expression in CREB-specific deletion mice; RNA level of renin in cultured cells decreased by 50% with single knock-down of CREB, CBP, or p300, and decreased 70% with triple knock-down of CREB, CBP, and p300. CONCLUSIONS: This study found that CREB was important for renin synthesis and the role of CREB can be achieved through the recruitment of co-activators CBP and p300.


Assuntos
Arteríolas/química , Proteína de Ligação a CREB/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína p300 Associada a E1A/genética , Sistema Justaglomerular/química , RNA Mensageiro/análise , Renina/genética , Animais , Proteína de Ligação a CREB/análise , Células Cultivadas , Colforsina/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/análise , Regulação para Baixo/genética , Proteína p300 Associada a E1A/análise , Expressão Gênica , Técnicas de Silenciamento de Genes , Imuno-Histoquímica , Sistema Justaglomerular/irrigação sanguínea , Sistema Justaglomerular/citologia , Camundongos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/química , RNA Interferente Pequeno/genética , Renina/análise , Sódio na Dieta/administração & dosagem , Transfecção
13.
Am J Physiol Regul Integr Comp Physiol ; 307(5): R505-13, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24965790

RESUMO

Renin, an aspartyl protease that catalyzes the rate-limiting step of the renin-angiotensin system, is first synthesized as an inactive precursor, prorenin. Prorenin is activated by the proteolytic removal of an amino terminal prosegment in the dense granules of the juxtaglomerular (JG) cells of the kidney by one or more proteases whose identity is uncertain but commonly referred to as the prorenin-processing enzyme (PPE). Because several extrarenal tissues secrete only prorenin, we tested the hypothesis that the unique ability of JG cells to produce active renin might be explained by the existence of a PPE whose expression is restricted to JG cells. We found that inducing renin production by the mouse kidney by up to 20-fold was not associated with the concomitant induction of candidate PPEs. Because the renin-containing granules of JG cells also contain several lysosomal hydrolases, we engineered mouse Ren1 prorenin to be targeted to the classical vesicular lysosomes of cultured HEK-293 cells, where it was accurately processed and stored. Furthermore, we found that HEK cell lysosomes hydrolyzed any artificial extensions placed on the protein and that active renin was extraordinarily resistant to proteolytic degradation. Altogether, our results demonstrate that accurate processing of prorenin is not restricted to JG cells but can occur in classical vesicular lysosomes of heterologous cells. The implication is that renin production may not require a specific PPE but rather can be achieved by general hydrolysis in the lysosome-like granules of JG cells.


Assuntos
Sistema Justaglomerular/metabolismo , Lisossomos/metabolismo , Renina/metabolismo , Animais , Células Cultivadas , Cisteína Endopeptidases/metabolismo , Células HEK293 , Humanos , Hidrólise , Sistema Justaglomerular/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Sistema Renina-Angiotensina/fisiologia
15.
Development ; 140(24): 4850-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24227652

RESUMO

COUP-TFI is an orphan nuclear receptor acting as a strong transcriptional regulator in different aspects of forebrain embryonic development. In this study, we investigated COUP-TFI expression and function in the mouse olfactory bulb (OB), a highly plastic telencephalic region in which continuous integration of newly generated inhibitory interneurons occurs throughout life. OB interneurons belong to different populations that originate from distinct progenitor lineages. Here, we show that COUP-TFI is highly expressed in tyrosine hydroxylase (TH)-positive dopaminergic interneurons in the adult OB glomerular layer (GL). We found that odour deprivation, which is known to downregulate TH expression in the OB, also downregulates COUP-TFI in dopaminergic cells, indicating a possible correlation between TH- and COUP-TFI-activity-dependent action. Moreover, we demonstrate that conditional inactivation of COUP-TFI in the EMX1 lineage results in a significant reduction of both TH and ZIF268 expression in the GL. Finally, lentiviral vector-mediated COUP-TFI deletion in adult-generated interneurons confirmed that COUP-TFI acts cell-autonomously in the control of TH and ZIF268 expression. These data indicate that COUP-TFI regulates TH expression in OB cells through an activity-dependent mechanism involving ZIF268 induction and strongly argue for a maintenance rather than establishment function of COUP-TFI in dopaminergic commitment. Our study reveals a previously unknown role for COUP-TFI in the adult brain as a key regulator in the control of sensory-dependent plasticity in olfactory dopaminergic neurons.


Assuntos
Fator I de Transcrição COUP/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Bulbo Olfatório/metabolismo , Tirosina 3-Mono-Oxigenase/biossíntese , Animais , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Proteínas de Homeodomínio/metabolismo , Sistema Justaglomerular/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Privação Sensorial , Olfato/fisiologia , Fatores de Transcrição/metabolismo
16.
J Am Soc Nephrol ; 24(8): 1263-73, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23744888

RESUMO

The renin-angiotensin-aldosterone system (RAAS) regulates BP and salt-volume homeostasis. Juxtaglomerular (JG) cells synthesize and release renin, which is the first and rate-limiting step in the RAAS. Intense pathologic stresses cause a dramatic increase in the number of renin-producing cells in the kidney, termed JG cell recruitment, but how this occurs is not fully understood. Here, we isolated renal CD44(+) mesenchymal stem cell (MSC)-like cells and found that they differentiated into JG-like renin-expressing cells both in vitro and in vivo. Sodium depletion and captopril led to activation and differentiation of these cells into renin-expressing cells in the adult kidney. In summary, CD44(+) MSC-like cells exist in the adult kidney and can differentiate into JG-like renin-producing cells under conditions that promote JG cell recruitment.


Assuntos
Células-Tronco Adultas/metabolismo , Captopril/farmacologia , Diferenciação Celular/fisiologia , Sistema Justaglomerular/citologia , Rim/citologia , Células-Tronco Mesenquimais/metabolismo , Sistema Renina-Angiotensina/fisiologia , Renina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Sistema Justaglomerular/metabolismo , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Renina-Angiotensina/efeitos dos fármacos
17.
J Neurosci ; 33(7): 2916-26, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23407950

RESUMO

Evidence for coexpression of two or more classic neurotransmitters in neurons has increased, but less is known about cotransmission. Ventral tegmental area (VTA) neurons corelease dopamine (DA), the excitatory transmitter glutamate, and the inhibitory transmitter GABA onto target cells in the striatum. Olfactory bulb (OB) short axon cells (SACs) form interglomerular connections and coexpress markers for DA and GABA. Using an optogenetic approach, we provide evidence that mouse OB SACs release both GABA and DA onto external tufted cells (ETCs) in other glomeruli. Optical activation of channelrhodopsin specifically expressed in DAergic SACs produced a GABA(A) receptor-mediated monosynaptic inhibitory response, followed by DA-D(1)-like receptor-mediated excitatory response in ETCs. The GABA(A) receptor-mediated hyperpolarization activates I(h) current in ETCs; synaptically released DA increases I(h), which enhances postinhibitory rebound spiking. Thus, the opposing actions of synaptically released GABA and DA are functionally integrated by I(h) to generate an inhibition-to-excitation "switch" in ETCs. Consistent with the established role of I(h) in ETC burst firing, we show that endogenous DA release increases ETC spontaneous bursting frequency. ETCs transmit sensory signals to mitral/tufted output neurons and drive intraglomerular inhibition to shape glomerulus output to downstream olfactory networks. GABA and DA cotransmission from SACs to ETCs may play a key role in regulating output coding across the glomerular array.


Assuntos
Axônios/metabolismo , Dopamina/metabolismo , Neurônios/metabolismo , Bulbo Olfatório/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Axônios/fisiologia , Channelrhodopsins , Estimulação Elétrica , Glutamato Descarboxilase/metabolismo , Humanos , Imuno-Histoquímica , Sistema Justaglomerular/citologia , Lasers , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/fisiologia , Bulbo Olfatório/citologia , Técnicas de Patch-Clamp , Estimulação Luminosa , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Transmissão Sináptica/fisiologia , Tirosina 3-Mono-Oxigenase/genética
18.
Pflugers Arch ; 465(1): 25-37, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22733355

RESUMO

A major rate-limiting step in the renin-angiotensin-aldosterone system is the release of active renin from endocrine cells (juxtaglomerular (JG) cells) in the media layer of the afferent glomerular arterioles. The number and distribution of JG cells vary with age and the physiological level of stimulation; fetal life and chronic stimulation by extracellular volume contraction is associated with recruitment of renin-producing cells. Upon stimulation of renin release, labeled renin granules "disappear;" the number of granules decrease; cell membrane surface area increases in single cells, and release is quantal. Together, this indicates exocytosis as the predominant mode of release. JG cells release few percent of total renin content by physiological stimulation, and recruitment of renin cells is preferred to recruitment of granules during prolonged stimulation. Several endocrine and paracrine agonists, neurotransmitters, and cell swelling converge on the stimulatory cyclic AMP (cAMP) pathway. Renin secretion is attenuated in mice deficient in beta-adrenoceptors, prostaglandin E(2)-EP4 receptors, Gsα protein, and adenylyl cyclases 5 and 6. Phosphodiesterases (PDE) 3 and 4 degrade cAMP in JG cells, and PDE3 is inhibited by cyclic GMP (cGMP) and couples the cGMP pathway to the cAMP pathway. Cyclic AMP enhances K(+)-current in JG cells and is permissive for secretion by stabilizing membrane potential far from threshold that activates L-type voltage-gated calcium channels. Intracellular calcium paradoxically inhibits renin secretion likely through attenuated formation and enhanced degradation of cAMP; by activation of chloride currents and interaction with calcineurin. Connexin 40 is necessary for localization of JG cells in the vascular wall and for pressure- and macula densa-dependent suppression of renin release.


Assuntos
Sistema Justaglomerular/metabolismo , Sistema Renina-Angiotensina , Renina/metabolismo , Animais , Diferenciação Celular , Humanos , Sistema Justaglomerular/citologia , Sistema Justaglomerular/fisiologia , Potenciais da Membrana , Via Secretória , Transdução de Sinais
19.
Pflugers Arch ; 465(1): 71-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22744230

RESUMO

Renin synthesis and renin secretion at the level of renal juxtaglomerular cells are regulated by neurotransmitters, hormones, paracrine, and mechanical signals. Although morphological evidence has indicated an intense intercellular communication of renin cells via connexins between the cells composing the juxtaglomerlar area, the functional behavior of renin-secreting cells has been considered of that of individual isolated cells for a long time. Findings obtained during recent years shed first light on the functional relevance of connexins for the control of renin secretion and also for the positioning of renin-secreting cells in the kidney. This short review aims to summarize these findings and tries to set them into a functional context.


Assuntos
Conexinas/metabolismo , Sistema Justaglomerular/metabolismo , Renina/metabolismo , Animais , Junções Comunicantes/metabolismo , Humanos , Sistema Justaglomerular/citologia , Sistema Renina-Angiotensina
20.
Pflugers Arch ; 465(6): 895-905, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23229015

RESUMO

The protease renin is the key enzyme in the renin-angiotensin system (RAS) that regulates extracellular volume and blood pressure. Renin is synthesized in renal juxtaglomerular cells (JG cells) as the inactive precursor prorenin. Activation of prorenin by cleavage of the prosegment occurs in renin storage vesicles that have lysosomal properties. To characterize the renin storage vesicles more precisely, the expression and functional relevance of the major lysosomal membrane proteins lysosomal-associated membrane protein 1 (LAMP-1), LAMP-2, and lysosomal integral membrane protein 2 (LIMP-2) were determined in JG cells. Immunostaining experiments revealed strong coexpression of renin with the LIMP-2 (SCARB2), while faint staining of LAMP-1 and LAMP-2 was detected in some JG cells only. Stimulation of the renin system (ACE inhibitor, renal hypoperfusion) resulted in the recruitment of renin-producing cells in the afferent arterioles and parallel upregulation of LIMP-2, but not LAMP-1 or LAMP-2. Despite the coregulation of renin and LIMP-2, LIMP-2-deficient mice had normal renal renin mRNA levels, renal renin and prorenin contents, and plasma renin and prorenin concentrations under control conditions and in response to stimulation with a low salt diet (with or without angiotensin-converting enzyme (ACE) inhibition). No differences in the size or number of renin vesicles were detected using electron microscopy. Acute stimulation of renin release by isoproterenol exerted similar responses in both genotypes in vivo and in isolated perfused kidneys. Renin and the major lysosomal protein LIMP-2 are colocalized and coregulated in renal JG cells, further corroborating the lysosomal nature of renin storage vesicles. LIMP-2 does not appear to play an obvious role in the regulation of renin synthesis or release.


Assuntos
Antígenos CD36/metabolismo , Lisossomos/metabolismo , Renina/metabolismo , Vesículas Secretórias/metabolismo , Regulação para Cima , Animais , Antígenos CD36/genética , Dieta Hipossódica , Sistema Justaglomerular/citologia , Sistema Justaglomerular/metabolismo , Sistema Justaglomerular/fisiologia , Camundongos , Camundongos Knockout , Renina/sangue , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...